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Abstract: We study a time bounded variant of 
Kolmogorov complexity. This motion, together with 
universal hashing, can be used to show that prob- 
lems solvable probabilistically in polynomial 
time are all within the second level of the 
polynomial time hierarchy. We also discuss 
applications to the theory of probabilistic 
constructions. 

I. Introduction 

Complexity theory is a natural setting in 

which to study randomness. In part, complexity 

theory, recursive function theory, and set 

theory are theories of definability. It is 

• no coincidence that notions of randomness play 

a role in such theories because a random object 

is in a certain sense the opposite of a definable 

one. 

A number of previous results establish con- 

nections between randomness and complexity. 

There are a variety of probabilistic algorithms 

[M,RI,R2,SS,K]. A few results, such as Adleman's 

[Adl], directly concern complexity classes. Paul 

and Seiferas [PS] have used Kolmogorov complexity 

to simplify counting arguments used in lower 

bound arguments. Recently, pursuing a line sug- 

gested by Shamir [Sh], Blum and Micali IBM] and 
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Yao [Y] give definitions of the notion of a 

random set of strings based upon polynomial 

circuit predictors and polynomial tests. This 

exciting direction is further explored in Blum, 

Blum and Schub [BBS] and Goldwasser, Micali, 

and Tong [GMT]. 

In this paper we present a complexity 

theoretic definition of randomness derived 

from Kolmogorov complexity. The Komogorov 

complexity of a finite binary string is the 

length of its shortest describing program. 

Intuitively, it is a measure of the amount of 

information the string contains. A string is 

random if it cannot be compressed, i.e., its 

shortest program is as long as the string itself. 

This idea originally appeared in [Ko] and was 

subsequently independently discovered by 

Chaitin [Chl] and Solomonoff [Sol]. Signifl- 

cant other work in this area includes [Ch2,L,S, 

KS]. Gewirtz's thesis [Gel contains an excellent 

introduction. 

We modify the Kolmogorov complexity by 

considering only programs that run for a 

limited amount of time. This is similar to a 

notion proposed some time ago by Levin [L] and 

subsequently by Adleman [Ad2] where the log of 

the running time is added to the length. Daley 

[D] and Keri-Ko [Ke] give definitions much llke 

ours and prove ~reral results of a recurslon- 

theoretic nature% Peterson [P] also considers 

related notions. 

As an interesting application we show that 

the class BPP [G] is contained within the poly- 

nomial time hierarchy [MSt,St]. The intuition is 

fairly simple: since BPP = P relative to a 
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random oracle with probability one [BG], it 

follows that BPP = P relative to a Kolmogorov- 

Chaitin-random oracle. A combinatorial argument 

involving Carter-Wegman universal hash functions 

[CW] shows that it is sufficient to use oracles 

that are random with respect to the time bounded 

complexity. Such oracles exist within the poly- 

nomial time hierarchy. Peter Gacs subsequently 

distilled the combinatorial essence of this argu- 

ment, obviating the need for random strings, and 

proving a stronger theorem. (See Section V.) 

II. The Complexity Measure 

Let A I, A2,... be a standard enumeration of 

all Turing machines and let A, also denote the 
l 

partial function computed by A° . Let 
1 

Z = {0,i} and N = {1,2,...} . For all s 6 E* 

u(Oils) = Ai(s) . The partial function U let 

is computed by the standard universal Turing 

machine. 

Definition: Let t: N + N , s E ~* and A 6 Z* 

or A C ~* 

i) Kt(s) = min{iPI: U(p) = s , halting within 

t(isl) steps} 

2) Kt(sIA) = min{IPI: uA(p) = s , halting within 

t(Isl) steps} Here A is given as an oracle to 

U . 

Remarks: There are no restrictions on the func- 

tion t . For sufficiently fast growing (non- 

recursive) t the time bound is inoperative and 

Kt( ) becomes equal to K( ) . 

Definition: For t: N + N , s E E* or A C ~* , 

let KD~(sIA) = min{ipI: ~VE ~*[uV'A(p)=l iff 

v=s] and uS'A(p) halts within t(ipl) steps 

The notation U v'A means that both v and A 

are given as oracles. 

The intuition is that while K(s) is the 

length of the shortest program generating s , 

KD(s) is the length of the shortest program which 

accepts only s . In pure Kolmogorov complexity 

these two measures differ by only an additive con- 

stant. In the time restricted complexity they 

appear to be quite different, though we can prove 

the following relationship. 

Theorem i: Let p , q denote polynomials and 

NP an oracle for a complete set. 

i) ~p ~q KDq(s) ~ KP(s) + 0(i) 

2) Vp 3q Kq(sI NP) i KDP(s) + 0(i) 

Proof: i) Immediate 

2) Use the NP-oracle repeatedly to deter- 

mine successive bits of s . 

III. Coding Lemma 

The usefulness of Kolmogorov complexity in 

simplifying counting arguments stems from the fol- 

lowing relationship: 

Theorem: If A C En then Vs E A : 

K(slA) ! log IAI + 0(i) 

The short program for s is simply its 

index in a lexicographic ordering of A . 

Thus if an easily definable set A is sparse, 

i.e., has only a small fraction of E n , then its 

members are all nonrandom, given some side infor- 

mation depending only upon A . The principal 

theorem of this paper is an analogous theorem 

about KD c . If a sparse set A is definable 

by a polynomial size circuit, then all of its 

members have short, fast descriptions given 

some side information depending only upon A . 

Theorem 2: Vc 3d if A C ~ and is 

accepted by a circuit of size n c , then Vs E A: 

KDd(sIA, iA ) j log IAI + log log IAI + O(i) 

where i A depends only upon A . 

The proof can be viewed as an application of 

Carter-Wegman universal hashing [CW]. A randomly 

chosen hash function from a certain distribution 

is likely to isolate s from the remainder of A . 

Its description is its image under the hash 

function. 

Let k = IAI , m = 1 + [log k] , and for 

x E Z n let x. denote the i-th bit. Let 
i 

h: E n ÷ E m be a linear transformation given by a 

randomly chosen m×n binary matrix R = {r%. } , 

i.e. for x E E r , Mx is a string y E ~ 

where Yi = (Ej rij A xj) mod 2 . 
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Lemma: 

Lemma: 

For each i < n and distinct 

Pr[(h(x)) i = (h(Y))i] = 1/2 

For distinct x,y E En 

Pr[h(x) = h(y)] = 2 -m 

x,y E En 

Lemma: For any x E I n , 

er[3y 6A (y#x and 

k'2 -m < 1/2 

h(x) =h(y))] < 

.Lemma: Let H be a collection m randomly 

selected functions h as above. 

er[~h E H 3Y E A (y#x and h(x) =h(y))] 
2 -m 

Lemma: Pr[~x E A Wh E H 3y E A (y#x and 

h(x) = h(y))] < 1/2 

Definition: Let h: En + Em and H be a 

collection of such functions. Let A,B ~ ~n and 

x E E n . Say h separates x within A if 

for every y in A , different from x , 

h(x) # h(y) . Say h separates B within A 

if it separates each x E B within A . Say h 

separates B within A if for each x 6 B some 

h E H separates x within A . Recapitulating 

the preceeding lemmas we have: 

n Coding Lemma: A C , where k = A , 

m = 1 + [log k] . If H is a collection of 

randomly chosen linear transformations 

En ÷ Em then: 

Pr[H separates A within A] ~ 1/2 . 

Proof of Theorem 2: Let H be a collection of 

functions as given by the coding lemma. Let 

i A be an encoding of H . For each s 6 A 

there is some h. E H that separates it within 
1 

A . The description of s is then bihi(s) 

where b. is the binary representation of i 
1 

padded out to length [log m] . Thus KDP(sIA,i A) 

! log m + m + 0(i) = logiA I + loglogIA I + 0(i). 

The polynomial p is large enough to permit the 

algorithm to check that s 6 A and h.(s) is 
I 

correct. 

On information theoretic grounds we speculate 

that it should be possible to remove the additive 

loglogiA I • 

Theorem 3: ~ c 3d if A C E n is accepted by a 

circuit of size n c then there is a string i A 

such that then for each s E A : 

i) Kd(sIA,iA,NP) j logiA I + logloglA I + 0(I) 

2) KH(sIA,E2 ) ~ logiA I + loglogiA I + 0(i) 

Proof: i) Immediate from Theorems i and 2. 

2) The algorithm computes the lexico- 

graphically first H separating A with- 

in A instead of obtaining one for free. 

This may be done with a E 2 oracle since 

testing that H separates A within A 

is a H I predicate. 

IV. Random Strings and the Class BPP 

Definition: String s is said to be (p~c)- 

random if KP(s) ~ Is[ - c , and (p,c)-~ii 
random if KP(s[E i) ~ Is[ - c . Often we will 

write only E.-random v/hen the time bound p is 
l 

implicit and c is 0. 

Theorem 4: For a fixed polynomial p , 

{(s,c); s is (p,c)-random} 6 C0-NP . 

This can be generalized to show that the (p,c)- 

E.-random strings form a language in Hi+l " i 
Note that (p,0)-random strings exist. 

The classes R [Adl] and its symmetric 

version BPP [G] consist of problems which can 

be solved with a high probability. 

Definition: A language A is in BPP iff there 

is a polynomial time predicate S A , a polynomial 

PA ' and an error bound g , 0 < e < 1/2 such 

that A = {x:~{y: [Yl = PA([X[ ) and 

SA(X,y )} > e} = {x: ~{y; IY] = PA([X[ ) and 

SA(X,y)} > l-e} where for y ~ En, ~y = [y[/2 n . 
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Theorem 5: BPP C~ N ~ . 

Proof: Let B E BPP . There is a probabilistic 

algorithm M' for ~ which, on input x of 
2 length n , chooses n y's at random and 

accepts if the majority of them satisfy SB(X,y). 

M will fail to give the correct answer with 

probability less than 2 -2n . Here, as else- 

where in the coming arguments, we assume wlog 

that n is large. Thus, c~lling such a sequenoe 

of n 2 m=n2pB(~ y's an experiment e of length 

the set F = {e E zm: M fails on input x x 
when using random experiment e} has cardinality 

at most 2m/2 2n = 2 m-2n . Therefore, by theQrem 

3, if e E ~ , for some polynomial b , 

Kb(eiFx,~) ~ m - 2n + log(m-2n) + 0(i) 

Since membership in F may be quickly computed x 
knowing x and whether x E A , by adding x to 

the description of e we have: 

Kb(eiZ 2) ~ n + m-2n + log(m-2n) + 0(i) 

< m for large n . 

Hence, the experiments in Fx are all Z 2- 

nonrandom. The language consisting of those 

strings accepted by M when using a Z2-random 

experiment is equal to B except perhaps at 

finitely many points. This language is in Z 4 

and since BPP is closed under complement, 

B ~ Z~ n ~ . 

A slightly more involved argument shows ' 

BPP ~ Z3 n H 3 by appealing to theorem 3 part 2. 

The next section gives a further improvement. 

V. BPP According to Gacs 

Peter Gacs improved the author's original 

theorem by showing that BPP C Z2 ~ ~2 with a 

somewhat simpler proof that relies only on the 

coding lemma and not on the notion of a random 

string. 

Theorem 6: BPP C Z 2 n H 2 

Proof: Let B E BPP be accepted by a probabil- 

istic algorithm with error probability < 2 -n 
k on inputs of length n , which uses m = n 

random bits. 

Let E C Z m be the collection of random x 
inputs on which M rejects x . For x E B , 

IEx] j 2 m-n . Letting ~ % = l+m-n , the coding 

lemma states that there is a collection H of 

£ linear transformations zm + Z£ separating 

Ex within Ex If x ~ B , ]Ex] > 2 m-I and 

by the pidgeon hole principle no such collection 

exists. Hence x E B iff such an H exists. 

Expanding this, x E B iff 

(~H) (VaE Ex) (3hE H) (Ve' E Ex) [e#e'^ h(e)#h(e') ] 

The second existential quantifier has polynomial 

range and is e~minable. Hence A E Z 2 n H2 i 

R 2 = R NP be the collection of Definition: Let 

languages accepted in random polynomial time 

[Adl] with an oracle for an NP-complete set. 

Corollary: BPP C R 2 n Co-R 2 

Proof: The coding lemma states that most H 

work. 

Steve Mahaney also later independently 

discovered the proof of theorem 6. 

VI Probabilistic Constructions 

The probabilistic method is a powerful one 

for proving the existence of certain objects. 

In the presence of a "certified random" string, 

a probabilistic construction can be made 

• deterministic. We formalize this notion and 

measure the degree of randomness required to 

carry out various constructions. 

Definition: Let A C Z*xZ* . A probabilistic 

construction for members in A is a poly- 

nomial time computable function 

f: Z*xZ* + Z* and a polynomial p such that 

for each s K Z* of length n ~{r E Z p(n). . 

(s,f(s,r)) E A} ~ 1/2 . Here, r may be thought 

of as the random input to the probabilistic 

algorithm. The construction is deterministic 

if for each s and r , (s,f(s,r)) E A . 

Typically, ~ might represent the length of a 

desired object expressed in unary. 
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A Z.- or ~i-probabillstic construction i 
is one where the set {(s,f(s,r)): s,r • Z* , 

Irl = P(ISl)}n A is in the corresponding 

level of the polynomial time hierarchy. 

Examples: i) There is a El-probabilistic 

construction for universal sequences. [AKLLR] 

2) Pippenger [Pi] gives a ~l- 

probabillstic construction for superconcentrations 

of size 29n + 0(i) . Gabber and Galil [GG] give 

a deterministic construction for 504n + 0(i) 

size superconcentrators . Note that the super- 

concentrator property is H2 even though the 

construction, by building up from the more simply 

described expanding graphs, is only HI " 

3) There are H0-probabilistic 

constructions for t~e restrictions employed in 

the lower bound on circuits given in [FSS] and 

[$2]. Pippenger [personal communication] points 

out that ~o-COnstructions can be excecuted with 

certainty by an algorithm that runs in expected 

polynomial time. 

4) Pippenger and Yao [PY] give a 

~2-probabilistic construction for rearrangable 

networks of size O(n(logn) I/k) for depth k . 

Theorem: If there is a Zi-probabilistic 

construction for members of a set A then there 

is a deterministic construction for members of 

A relative to an oracle for Zi+2-random strings. 
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