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Abstract: We study a time bounded variant of
Kolmogorov complexity. This rnotion, together with
universal hashing, can be used to show that prob-
lems solvable probabilistically in polynomial
time are all within the second level of the
polynomial time hierarchy. We also discuss
applications to the theory of probabilistic
constructions.

I. Introduction
Complexity theory is a natural setting in
which to study randomness. In part, complexity
theory, recursive function theory, and set
theory are theories of definability. It is
© no coincidence that notions of randomness play
a role in such theories because a random object
is in a certain sense the opposite of a definable
one.
A number of previous results establish con-
nections between randomness and complexity.
There are a variety of probabilistic algorithms
[M,R1,R2,88,K]. A few results, such as Adleman's
[Adl], directly concern complexity classes. Paul
and Seiferas [PS] have used Kolmogorov complexity
to simplify counting arguments used in lower
bound arguments. Recently, pursuing a line sug-

gested by Shamir [Sh], Blum and Micali {BM] and
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Yao [Y] give definitions of the notion of a
random set of strings based upon polynomial
circuit predictors and polynomial tests. This
exciting direction is further explored in Blum,
Blum and Schub [BBS] and Goldwasser, Micali,
and Tong [GMT].

In this paper we present a complexity
theoretic definition of randomness derived
from Kolmogorov complexity. The Komogorov
complexity of a finite binary string is the
length of its shortest describing program.
Intuitively, it is a measure of the amount 6f
information the string contains. A string is
random if it cannot be compressed, i.e., its
shortest program is as long as the string itself,
This idea originally appeared in [Ko] and was
subsequently independently discovered by
Chaitin [Chl] and Solomonoff [Sol]. Signifi-
cant other work in this area includes [Ch2,L,S,
KS]. Gewirtz's thesis [Ge] contains an excellent
introduction.

We modify the Kolmogorov complexity by
considering only programs that run for a
limited amount of time. This is similar to a
notion proposed some time ago by Levin {L] and
subsequently by Adleman [Ad2] where the log of
the running time is added to the length. Daley
[D] and Keri-Ko [Ke] give definitions much like

ours and prove several results of a recursion-

theoretic naturey Peterson [P] also considers
related notions. .
As an interesting application we show that

the class BPP [G] is contained within the poly-

nomial time hierarchy [MSt,St]. The intuition is

fairly simple: since BPP = P relative to a



random oracle with probability one [BG], it

follows that BPP = P relative to a Kolmogorov-

Chaitin-random oracle. A combinatorial argument
involving Carter-Wegman universal hash functions
[CW] shows that it is sufficient to use oracles
that are random with respect to the time bounded
complexity. Such oracles exist within the poly-
nomial time hierarchy. Peter Gacs subsequently

distilled the combinatorial essence of this argu-
‘ment, obviating the need for random strings, and
proving a stronger theorem. (See Section V.)
II. The Complexity Measure

Let Al’ A2,... be a standard enumeration of

all Turing machines and let Ai also denote the
Let

For all s € Ix*

partial function computed by Ai .
L ={0,1} and N = {1,2,...} .
let U(Olls) = Ai(s) The partial function U

is computed by the standard universal Turing

machine.

Definition: Let t: N> N, s € I* and A € I#
or AC X%

1) K%(s) = min{|p|: U(p) = s , halting within

t(Isl) steps}

2) Kt(sz) = min{|p|: UA(p) = s , halting within

t(ls]) steps}] Here A is given as an oracle to
U .

Remarks: There are no restrictions on the func-
tion t . For sufficiently fast growing (non-

recursive) t the time bound is inoperative and

Kt( ) becomes equal to K( )
Definition: For t: N> N, s€ Z* or AC I%

let KDt(slA) = min{|p|: Vve Z*[UV’A(p)=l iff
v=g] and US’A(p) halts within t(|p|) steps
The notation yVA means that both v and A
are given as oracles.

is the

The intuition is that while K(s)

length of the shortest program generating s ,
KD(s)
accepts only s .

these two measures differ by only an additive con-

is the length of the shortest program which
In pure Kolmogorov complexity
stant, In the time restricted complexity they
appear to be quite different, though we can prove

the following relationship.
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Theorem 1: Let p , q denote polynomials and

NP an oracle for a complete set.
1) Vp3q xpi(s) < kP(s) + 0(1)
2) Vp3a k%s|we) < koP(s) + 01)
Proof: 1) Immediate
2) Use the NP-~oracle repeatedly to deter-

mine successive bits of s .
IIT. Coding Lemma

The usefulness of Kolmogorov complexity in
simplifying counting arguments stems from the fol-
lowing relationship:

Theorem: If A C ™ then ¥Ys€a:

K(s|A) < log |A| + 0(1)

The short program for s 1is simply its
index in a lexicographic ordering of A .
Thus if an easily definable set A 1is sparse,
i,e., has only a small fraction of bk , then its
members are all nonrandom, given some side infor-
mation depending only upon A . The principal
theorem of this paper is an analogous theorem

about KD® If a sparse set A 1is definable
by a polynomial size circuit, then all of its
members have short, fast descriptions given

some side information depending only upon A .

Theorem 2: Ve 3d if A C P and is

accepted by a circuit of size n¢ , then Ys € a:

KDd(slA,iA) < log |A| + log log |A| + 0(1)

where i,

The proof can be viewed as an application of

depends only upon A .
Carter-Wegman universal hashing [CW]. A randomly
chosen hash function from a certain distribution
is likely to isolate s from the remainder of A .
Its description is its image under the hash

function.

Let k = [AI ,m=1+ llog k]l , and for
x € " 1let x,
h: 2%+ 3@

denote the i-th bit. Let

be a linear transformation given by a

R={r; 1},

h

is a string y € L

randomly chosen mXn binary matrix
for x€ 1z’ ,

¢
J

i.e. Mx

where . = r,.
Vi i

x,) mod 2 .
J A J



n

Lemma: For each i < n and distinct x,y € I~ ,
Pri(h(x)); = (a(y)) ] = 1/2
Lemma: For distinct x,y € b ,
Prih(x) = h(y)] = 27"
n N
Lemma: For any x € L ,
Pr(3y€A (y#x and h(x)=h(y))] =<
k2™ < 1/2
.Lemma: Let H be a collection m randomly

as above.

(y#x

selected functions h
Pr[¥fh€H Jy€ A
€2 "

and h(x)=h(y))]

Lemma: Pr[}Jx € A VhE€H 3y>€ A (y#x and
h(x) = n(y))] < 1/2

Definition: Let h: Z" + 5" and H be a
collection of such functions. Let A,B C " and
x €. Say h separates x within A if

for every y in A , different from x ,

h(x) # h(y) Say h separates B within A

if it separates each x € B within A . Say &k
separates B within A if for each x € B some
h € H separates x within A . Recapitulating

the preceeding lemmas we have:

A S_n , where k= A ,
If H

Coding Lemma:
1+ [log k]

m = is a collection of m

randomly chosen linear transformations
n m
I~z then:

Pr[H separates A within A] > 1/2

Proof of Theorem 2: Let H be a collection of
functions as given by the coding lemma. Let
i, be an encoding of H . For each s € A

A
there is some hi € H that separates it within

A . The déscription of s 1is then bihi(s)

where bi is the binary representation of 1

padded out to length [log ml . Thus KDP(s[A,iA)
< logm+m+ 0(1) = log|Aa| + loglog|a| + 0(1).
The polynomial p 1is large enough to permit the
algorithm to check that s € A and hi(s) is

correct.
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Proof: 1)

On information theoretic grounds we speculate
that it should be possible to remove the additive
1oglogIA[ .

Theorem 3: Y c 3Jd if A S_Zn is accepted by a

circuit of size n° then there is a string 1
such that then for each s € A :
1) Kd(slA,iA,NP) < log|A] + loglog|A| + 0(L)

2) k%(s|a.z,) < log|a| + loglog|a| + 0(1)

A

Immediate from Theorems 1 and 2.

2) The algorithm computes the lexico-
graphically first H
in A

separating A with-
instead of obtaining one for free.

This may be done with a ¥, oracle since

2
A within A

testing that H separates

isa I

1 predicate.

Iv.

Random Strings and the Class BPP
Definition: String s 1is said to be (E!c)Q
random if KP(s) Z_]s| - ¢, and (p,c)~ =
random if KP(SIZi) 3_[s| - ¢ . Often we will

write only Zi—random when the time bound p is
implicit and c¢ 1is O.

Theorem 4:

{(s,c); s

For a fixed polynomial p ,
is (p,c)-random} € CO~NP .

This can be generalized to show that the (p,c)-
Zi—random strings form a language in Hi+1 .
Note that (p,0)-random strings exist.

The classes R [Adl] and its symmetric
version BPP [G] consist of problems which can

be solved with a high probability.

Definition: A language A 1is in BPP iff there
is a polynomial time predicate SA , a polynomial
0 < e <1/2 such

, and an error bound € ,

Pa
that A = {x:uly: |y]| = pA(|x|) and
S,(x,»)} > €} = {x: ulys |y| = p,(|x[) and

s,(x,y)} > 1-€} where for ¥ C X%, WY = lx|/2% .



Th S5: BPP C NI, .
eorem < Z“ n

Proof: Let B € BPP . There is a probabilistic
algorithm M for B which, on input x of
length n , chooses n2 y's at random and
accepts if the majority of them satisfy SB(x,yL
M will fail to give the correct answer with
probability less than 2—2n . Here, as else-
where in the coming arguments, we assume wlog
that n 1is large. Thus, calling such a sequence
of n2 y's an experiment e of length m=n2pB(m
the set F = {e € ™ M fails on input x

when using random experiment e} has cardinality

m-2n

at most 2m/2Zn =2 . Therefore, by theorem

3, if. e € F; , for some polynomial b ,
Kb(e|Fx,Zz) <m -~ 2n + log(m-2n) + 0(1)

Since membership in Fx may be quickly computed
knowing x and whether x € A , by adding- x to

the description of e we have:

Kb(e[Zz) < n+ m-2n + log(m-2n) + 0(1)

<m for large n .

Hence, the experiments in FX are all 22—
nonrandom. The language consisting of those
strings accepted by M when using a Zz—random

experiment is equal to B except perhaps at

finitely many points. This language is in Zq
and since BPP is closed under complement,

C N
B C ZH H* .
A slightly more involved argument shows’
BPP 5'23 N H3 by appealing to theorem 3 part 2.

The next section gives a further improvement.

V. BPP According to Gacs

Peter Gacs improved the author's original
theorem by showing that BPP E»Zzl\ H2 with a
somewhat simpler proof that relies only on the
coding lemma and not on the notion of a random
string.

Theorem 6: BPP S_ZZ n H2

Proof: Let B € BPP be accepted by a probabil-
istic algorithm with error probability < 278
on inputs of length n , which uses m = nk
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‘deterministic.

construction for members in A

random bits.

Let EX € ™ be the collection of random
inputs on which M rejects x . For x€ B ,
lEi] < 2 Letting: £ = l+m-n , the coding
lemma states that there is a collection H of
P 22

: m-1
E_ within E . If x¢ B, [E| >2 and
X X X

% linear transformations separating

by the pidgeon hole principle no such collection
x € B
Expanding this, x € B iff

exists, Hence iff such an H exists.

QH) (Va€E ) @hE€R) (Ye' €E ) [efe’a h(e)#h(e')]

The second existential quantifier has polynomial

range and is elminable. Hence A € 22 n H2 .

Let R2 = RNP be the collection of

languages accepted in random polynomial time

Definition:
[Adl] with an oracle for an NP-complete set.

N Co-R

Corollary: 9 2

BPP C R
Proof: The coding lemma states that most H

work.

Steve Mahaney also later independently

discovered the proof of theorem 6.

VI Probabilistic Constructions

The probabilistic method is a powerful one
for proving the existence of certain objects.
In the presence of a "certified ramdom" string,
a probabilistic construction can be made
We formalize this notion and
measure the degree of randomness required to
carry out various constructions.

Definition: Let A C I#xI* . A probabilistic
is a poly-

time computable function

f: DHExTk > Tk

nomial
and a polynomial p such that
for each s € I* of length n ufr c Zp(n):

(s,£(s,r)) € A} > 1/2 .

of as the random input to the probabilistic

Here, r may be thought

algorithm. The construction is deterministic

if for each s and r , (s,f(s,r)) € A .

Typically, § might represent the length of a

desired object expressed in unary.



A Zi— or TTi—probabilistic construction
{(s,f(s,r)): s,r € %,
|t] = p(|s[)}N A 1is in the corresponding

is one where the set
level of the polynomial time hierarchy.
Examples: 1) There is a Hl—probabilistic

[AKLLR]
2) Pippenger [Pi] gives a Hl—

construction for universal sequences.

probabilistic construction for superconcentrations
29n + 0(1) . Gabber and Galil [GG] give
504n + 0(1)

Note that the super-

of size
a deterministic construction for
size superconcentrators .

concentrator property is I even though the

construction, by building u§ from the more simply
described expanding graphs, is only Hl .

3) There are H0~probabilistic
constructions for the restrictions employed in
the lower bound on circuits given in [FSS] and
[s2].

out that HO—constructions can be excecuted with

Pippenger [personal communication] points

certainty by an algorithm that runs in expected
polynomial time.

4) Pippenger and Yao [PY] give a
Hz—probabilistic construction for rearrangable
networks of size O(n(logn)l/k) for depth k .
Theorem: If there is a Zi—probabilistic
construction for members of a set A then there

is a deterministic construction for members of

A relative to an oracle for Zi+2—random strings.,
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